Grace's Guide To British Industrial History

Registered UK Charity (No. 115342)

Grace's Guide is the leading source of historical information on industry and manufacturing in Britain. This web publication contains 163,469 pages of information and 245,911 images on early companies, their products and the people who designed and built them.

Grace's Guide is the leading source of historical information on industry and manufacturing in Britain. This web publication contains 147,919 pages of information and 233,587 images on early companies, their products and the people who designed and built them.

James Nasmyth by James Nasmyth: Chapter 17

From Graces Guide
Revision as of 16:53, 20 October 2015 by PaulF (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


The rapid extension of railways and steam navigation, both at home and abroad, occasioned a largely increased demand for machinery of all kinds. Our order-book was always full; and every mechanical workshop felt the impulse of expanding trade. There was an increased demand for skilled mechanical labour — a demand that was far in excess of the supply. Employers began to outbid each other, and wages rapidly rose. At the same time the disposition to steady exertion on the part of the workmen began to decline.

This state of affairs had its usual effect. It increased the demand for self-acting tools, by which the employers might increase the productiveness of their factories without having resort to the costly and untrustworthy method of meeting the demand by increasing the number of their workmen. Machine tools were found to be of much greater advantage. They displaced hand-dexterity, and muscular force. They were unfailing in their action. They could not possibly go wrong in planing and turning, because they were regulated by perfect modelling and arrangements of parts. They were always ready for work, and never required a Saint Monday.

As the Bridgewater Foundry had been so fortunate as to earn for itself a considerable reputation for mechanical contrivances, the workshops were always busy. They were crowded with machine tools in full action, and exhibited to all comers their effectiveness in the most satisfactory manner. Every facility was afforded to those who desired to see them at work and every machine and machine tool that was turned out became in the hands of its employers the progenitor of a numerous family.

Indeed, on many occasions I had the gratification of seeing my mechanical notions adopted by rival or competitive machine constructors, often without acknowledgment; though, notwithstanding this point of honour, there was room enough for all. Though the parent features were easily recognisable, I esteemed such plagiarisms as a sort of left-handed compliment to their author. I also regarded them as a proof that I had hit the mark in so arranging my mechanical combinations as to cause their general adoption and many of thorn remain unaltered to this day.

The machine tools when in action did not require a skilled workman to guide or watch them. All that was necessary to superintend them was a well-selected labourer. The self-acting machine tools already possessed the requisite ability to plane, to turn, to polish, and to execute the work when firmly placed in situ. The work merely required to be shifted from time to time, and carefully fixed for another action of the machine.

Besides selecting clever labourers, I made an extensive use of active handy boys to superintend the smaller class of self-acting machine tools. To do this required very little exertion of muscular force, but only observant attention. In this way the tool did all the working (for the thinking had before been embodied in it), and it turned out all manner of geometrical forms with the utmost correctness. This sort of training educated the perceptive faculties of the lads, and trained their ideas to perfect truth of form, at the same time that it gave them an intimate acquaintance with the nature of the materials employed in mechanical structures. The rapidity with which they acquired the efficiency of thoroughly practical mechanics was most surprising.

As the lads grew in strength they were promoted to the higher classes of work. We gave to the foreman of each department the right to recommend to a special rise of wages any lad who showed an extra intelligent earnestness and assiduity in superintending his machine. This produced an active spirit of emulation, which not only advanced their efficiency but relieved the foreman from a source of irritation in the discharge of his duties. I have already referred to the subject in a former portion of this narrative but it cannot be too strongly urged upon the attention of proprietors of mechanical works. Besides making first-rate workmen, this method prevents the lads from getting into habits of workshop dishonesty, skulking, and other annoyances. My system of non-binding of apprentices was the "perfect cure," if I may so speak. All that existed between us was mutual satisfaction with each other, and that alone proved from first to last in every respect a perfect bond.

So completely was the workmen in attendance on self-acting machines relieved from the necessity of labour, that many of the employers, to keep the men from falling asleep, allowed them to attend to other machines within their powers of superintendence. This kept them fully awake. The workmen cheerfully acquiesced in this arrangement, as a relief from tedium, and especially when a shilling extra was added to their wages for each machine superintended. All went well for a time, for men as well as masters. But now came the difficulty. The system was opposed to the rules of the Trades' Union. Their committee held, that setting one man to superintend more than one machine was keeping out of employment some other man who ought to be employed. And yet, at the time that the objection was made, such persons were not to be had. The increased demand for skilled labour had employed every spare workman.

Nevertheless the system, in the eyes of the Union, "must be put down." The demand was made that every machine must have a Union man to superintend it, and that he must be paid the full Union regulation wages. All labourers and lads were to be discharged, and Union men employed in their places. As the times were good, and the workshops were full of orders, it was thought by the Union that the time had come to put the matter to the test. The campaign was opened by the organisation of a powerful body, entitled "The Amalgamated Society of Mechanical Engineers." It included every class of workmen employed in the trade – iron founders, turners, fitters, erectors, pattern-makers, and such like. All were invited to make common cause against the employers.

In order to make a conspicuous demonstration of their power, the Council of the Union first attacked the extensive firm of Platt Brothers, Oldham. The Council sent them a mandate to discharge all their labourers or other "illegal hands" from their works — all who were employed in superintending their vast assortment of machinery — and to fill their places with "legal mechanics" at the then regulation wages. The plan of the Union was to attack the employers one by one — to call out the hands of one particular workshop until the employers were subdued and obeyed the commands of the Union; and then to attack another employer in the same way. The sagacity of this policy very much resembled that of the ostrich, which hides its head in a hole and thinks it is concealed. The employers knew the drift of the policy, and took steps to circumvent it.

A mutual defence association was formed, and a decree was issued that, unless the demand of the Council against Platt's factory was withdrawn by a certain day, every employer would at once close his concern. The Union, nevertheless, stuck to their guns — but only for a time. A strike took place. The works of some of the most extensive employers of labour were closed. Everything was paralysed for a time; the men went about with their hands in their pockets, while the women and children at home were wanting food. After a few weeks the funds of the Amalgamated Society became so reduced that the men gradually retreated from the contest.

Meanwhile, such concerns as contrived to keep their workmen in full employment — of whom we were one - made use of the occasion to act on the healthy system of what I have termed "Free trade in ability." We added, so far as we could, to the number of intelligent labourers, advanced them to the places which the Unionist workmen had left at the order of their Council, and thus kept our men on full wages until the strike was over. This was the last contest I had with Trades' Unions. One of the results was that I largely increased the number of self-acting machines, and gave a still greater amount of employment to my unbound apprentices. I placed myself in an almost impregnable position, and showed that I could conduct my business with full activity and increasing prosperity, and at the same time maintain good-feeling between employed and employer.

Another important point was this, — that I always took care to make my foremen comfortable, and consequently loyal. A great part of a man's success in business consists in his knowledge of character. It is not so much what he himself does, as what he knows his heads of departments can do. He must know them intimately, take cognisance of the leading points of their character, pick and choose from them, and set them to the work which they can most satisfactorily superintend. Edward Tootal, of Manchester, said to me long before, "Never give your men cause to look over the hedge." He meant that I should never give them any reason for looking for work elsewhere. It was a wise saying, and I long remembered it. I always endeavoured to make my men and foremen as satisfied as possible with their work, as well as with their remuneration.

I never had any cause to regret that I had struck out an independent course in managing the Bridgewater Foundry. The works were always busy. A cheerful sort of contentment and activity pervaded the entire establishment. Our order-book continued to be filled with the most satisfactory class of entries. The railway trucks in the yard, and the canal barges at the wharf, presented a busy scene, — showing the influx of raw material and the output of finished work. This happy state of affairs went on in its regular course without any special incident worthy of being mentioned. The full and steady influx of prosperity that had been the result of many years of interesting toil and cheerful exertion, had caused the place to assume the aspect of a smoothly working self-acting machine.

Being blessed with a sound constitution, I was enabled to perform all my duties with hearty active good-will. And as I had occasional journeys to make in connection with our affairs and interests, these formed a very interesting variety in the ordinary course of my daily work. The intimate and friendly intercourse which I was so fortunate as to cultivate with the heads of the principal engineering firms of my time, kept me well posted up in all that was new and advanced in the way of improvements in mechanical processes. I had at the same time many pleasant opportunities of making suggestions as to further improvements, some of which took root and yielded results of no small importance. These visits to my friends were always acceptable, if I might judge from the hearty tone of welcome with which I was generally received.

I do not know what may be the case in other classes of businesses or professions, but as regards engineer mechanists and metal workers generally, there is an earnest and frank intercommunication of ideas — an interchange of thoughts and suggestions — which has always been a source of the highest pleasure to me, and which I have usually found thoroughly reciprocated. The subjects with which engineers have to deal are of a wide range, and jealousy in intercommunication is almost entirely shut out. Many of my friends were special "characters." For the most part they had made their own way in the world, like myself. I found among them a great deal of quaint humour. Their talk was quite unconventional and yet their remarks were well worth treasuring up in the memory as things to be thought about and pondered over. Sometimes they gave the key to the comprehension of some of the grandest functions in Nature, and an insight into the operation of those invariable laws which regulate the universe. For all Nature is, as it were, a grand museum, ruled over by an ever present Almighty Master, — of whose perfect designs and works we are only as yet obtaining hasty and imperfect glimpses.

But to return to my humbler progress. From an early period of my efforts as a mechanical engineer, I had been impressed with the great advantages that would result from the employment of small high pressure steam-engines of a simple and compact construction. These, I thought, might suit the limited means and accommodation of small factories and workshops where motive power was required. The highly satisfactory results which followed the employment of steam-engines of this class, such as I supplied shortly after beginning business in Manchester, led to a constantly increasing demand for them. They were used for hoisting in and out the weighty bales of goods from the lofty Manchester warehouses. They worked the "lifts," and also the pumps of the powerful hydraulic presses used in packing the bales.

These little engines were found of service in a variety of ways. When placed in the lower parts of the building the waste steam was utilised in warming the various apartments of the house. The steam was conveyed in iron pipes, and thus obviated the risk of fire which attended the use of stoves and open fire-grates. I remember being much pleased with seeing a neat arrangement of a "hot-closet" heated by the waste steam conveyed from the bottom of the building. This was used for holding the dinners and teas of the minor clerks and workpeople. Another enclosed place, heated by waste steam, was used for drying wet clothes and jackets during rainy weather. Much attention was paid by the employers to their workpeople in these respects. The former exhibited a great deal of kindly thoughtfulness. But men and master were alike. It was a source of the greatest pleasure to me, when looking round the warehouses and factories, to see the intelligent steady energy that pervaded every department, from the highest to the lowest.

I never lost sight of the importance of extending the use of my small steam-engine. It was the most convenient method of applying steam power to individual machines. Formerly, the power to drive a small machine was derived from a very complicated arrangement of shafting and gearing brought from a distant engine. But by my system I conveyed the power to the machine by means of a steam pipe, which enabled the engine to which it was attached to be driven either fast or slow, or to be stopped or started, just as occasion required. It might be run while all the other machines were at rest; or, in the event of a break-down of the main engine of the factory, the small engine might still be kept going, or even assist in the repairs of the large one.

An important feature in this mode of conveying power by means of piping — in place of gearing and shifting belts and belt pulleys — was the ease with which the steam could be conveyed into intricate parts of the building. The pipes which I used were of wrought-iron, similar to those used in conveying gas. They could be curved to suit any peculiarity of the situation; and when the pipes were lapped with felt, or enclosed in wooden troughs filled with sawdust, the loss of heat by radiation was reduced to a minimum. The loss of power was certainly much less than in the friction of a long and perhaps tortuous line of shafting. With steam of 50 lbs. to the inch, a pipe of one-inch bore will convey sufficient steam to give forth five horse-power at a distance of two or three hundred feet from the boiler. [1]

I adopted the same practice in working the refined and complex machines used in printing coloured patterns on calico. A great variety of colours have to be transferred by a combination of rollers - each carrying its proper colour — which is printed on the calico with the utmost exactness, so as to result in the complete pattern. My system of having a separate engine to give motion to these colour-printing machines was found to be of great service, and its value was recognised by its speedy and almost universal adoption. Every connection with the main shaft, with its gearing and belts and pulleys by which colour-printing had before been accomplished was entirely done away with, and each machine had its own special engine. The former practice had led to much waste, and the printing was often confused and badly done. The power was conveyed from a great central steam-engine the printing machines were ranged by the side of a long gallery, and by means of a "clutch" each machine was started at once into action. The result of this was a considerable shock to the machine, and an interference with the relative adjustments of the six or eight colour rollers, which were often jerked out of their exact relative adjustment. Then the machines had to be stopped and the rollers readjusted, and sometimes many yards of calico had been spoiled before this could be accomplished.

These difficulties were now entirely removed. When all was adjusted, the attendant of the print-machine had only to open slightly the steam admission valve of his engine, and allow it to work the machine gently at its first off-go; and when all was seen to be acting in perfect concert, to open the valve further and allow the machine to go at the full speed. The same practice was adopted in slowing off the machine, so as to allow the attendant to scrutinise the pattern and the position of the work, or in stopping the machine altogether. So satisfactory were the results of the application of this mode of driving calico-printing machines, that it was adopted for the like processes as applied to other textile fabrics; and it is now, I believe, universally applied at home as well as abroad.

I may also add that the waste steam, as it issued from the engine after performing its mechanical duty there, was utilised in a most effective manner by heating a series of steam-tight cylinders, over which the printed cloth travelled as it issued from the printing machine, when it was speedily and effectively dried. In these various improvements in calico printing I was most ably seconded by Mr. Joseph Lese of Manchester, whose practical acquaintance with all that related to that department of industry rendered him of the greatest service. There was no "Invention," so to speak, in this almost obvious application of the steam-engine to calico printing. It required merely the faculty of observation, and the application of means to ends. The main feature of the system, it will be observed, was in enabling the superintendent of each machine to have perfect control over it, — to set it in motion and to regulate its speed without the slightest jerk or shock to its intricate mechanism. In this sense the arrangement was of great commercial value.

I had another opportunity of introducing my small engine system into the Government Arsenal at Woolwich. In 1847 the attention of the Board of Ordnance was directed to the inadequacy of the equipment of the workshops there. The mechanical arrangements, the machine tools, and other appliances, were found insufficient for the economical production of the apparatus of modern warfare. The Board did me the honour to call upon me to advise with them, and also with the heads of departments at the arsenal. Sir Thomas Hastings, then head of the Ordnance, requested me to accompany him at the first inspection. I made a careful survey of all the workshops, and although the machinery was very interesting as examples of the old and primitive methods of producing war material, I found that it was better fitted for a Museum of Technical Antiquity than for practical use in these days of rapid mechanical progress. Everything was certainly very far behind the arrangements which I had observed in foreign arsenals.

The immediate result of my inspection of the workshops and the processes conducted within them was, that I recommended the introduction of machine tools specially adapted to economise labour, as well as to perfect the rapid production of war material. In this I was heartily supported by the heads of the various departments. After several conferences with them, as well as with Sir Thomas Hastings, it was arranged that a large extension of the workshop space should be provided. I was so fortunate as to make a happy suggestion on this head. It was, that by a very small comparative outlay nearly double the workshop area might be provided by covering in with light iron roofs the long wide roadway spaces that divided the parallel ranges of workshops from each other.

This plan was at once adopted. Messrs. Fox and Henderson, the well-known railway roofing contractors, were entrusted with the order; and in a very short time the arsenal was provided with a noble set of light and airy workshops, giving ample accommodation for present requirements, as well as surplus space for many years to come. In order to supply steam power to each of these beautiful workshops, and for working the various machines placed within them, I reverted to my favourite system of small separate steam-engines. This was adopted, and the costly ranges of shafting that would otherwise have been necessary were entirely dispensed with.

A series of machine tools of the most improved modern construction, specially adapted for the various classes of work carried on in the arsenal, together with improved ranges of smiths' forge hearths, blown by an air blast supplied by fans of the best construction, and a suitable supply of small hand steam hammers, completed the arrangements; and quite a new era in the forge work of the arsenal was begun. I showed the managers and the workmen the docile powers of the steam hammer, in producing in a few minutes, by the aid of dies, many forms in wrought-iron that had heretofore occupied hours of the most skilful smiths, and that, too, in much more perfect truth and exactitude. Both masters and men were delighted with the result: and as such precise and often complex forms of wrought-iron work were frequently required by hundreds at a time for the equipment of naval gun carriages and other purposes, it was seen that the steam hammer must henceforward operate as a powerful instrument in the productions of the arsenal.

In the introduction of all these improvements I received the frank and cordial encouragement of the chief officers of the Board of Ordnance and Admiralty. My suggestions were zealously carried out by Colonel J. N. Colquhoun, then head of the chief mechanical department of the Ordnance works at Woolwich. He was one of the most clear-headed and intelligent men I have ever met with. He had in a special degree that happy power of inspiring his zeal and energy into all who worked under his superintendence, whether foremen or workmen. A wonderfully sympathetic effect is produced when the directing head of the establishment is possessed of the valuable faculty of cheerful and well-directed energy. It works like an electric thrill, and soon pervades the whole department. I may also mention General Dundas, director of the Royal Gun Foundry, and General Hardinge, head of the Royal Laboratories. [2] This latter department included all processes connected with explosives. It was superintended by Captain Boxer, an officer of the highest talent and energy, who brought everything under his control to the highest pitch of excellence. I must also add a most important person, my old and much esteemed friend John Anderson, then general director of the Machinery of the arsenal. He was an admirable mechanic, a man of clear practical good sense and judgment, and he eventually raised himself to the highest position in the public service.

The satisfactory performance of the machinery which had been supplied to the workshops of the royal dockyards and arsenals, led to further demands for similar machinery for foreign Governments. Foreign visitors were allowed freely to inspect all that had been done. Whatever may be said of the wisdom of this proceeding, it is certainly true that no mechanical improvement can long be kept secret nowadays. Everything is published and illustrated in our engineering journals. And if the foreigners had not been allowed to obtain their new machines from England, they were provided with facilities enough for constructing them for themselves. At all events, one result of the improved working of the new machines at the Royal Arsenal at Woolwich, was the receipt of large orders by our firm for the supply of foreign Governments. For instance, that of Spain employed us liberally, principally for the equipment of the royal dockyards of Ferrol and Cartagena. These orders came to us through Messrs. Zuluatta Brothers, who conducted their proceedings with us in a prompt and business-like way for many years. Through the same firm we obtained orders to furnish machinery for the Spanish royal dockyard at Havana.

In 1849 we received an extensive order from the Russian Government. This was transmitted to us through the Imperial Consulate in London. The machinery was required for the equipment of a very extensive rope factory at the naval arsenal of Nicolaiev, on the Black Sea. This order included all the machinery requisite for the factory, from the heckling of the hemp to the twisting of the largest ropes and cables required in the Russian naval service. The design and organisation of this machinery in its minutest detail caused me to make a special study of the art of rope-making. It was a comparatively new subject to me but I found it full of interest. It was a difficulty, and therefore to be overcome. And in this lies a great deal of the pleasure of contriving and inventing.

During the progress of the work I had the advantage of the frequent presence of an able Russian officer, Captain Putchkraskey, whose intelligent supervision was a source of much satisfaction. We had also occasional visits from Admiral Kornileff, a man of the highest order of intelligence. He was not only able to appreciate our exertions to execute the order in first-rate style, but to enter into all the special details and contrivances of the work while in progress. I had often occasion to meet Russian officers while at the Bridgewater Foundry. They were usually men of much ability, selected by the Russian Government to act as their agents abroad, in order to keep them well posted up in all that had a bearing upon their own interests. They certainly reflected the highest credit on their Government, as proving their careful selection of the best men to advance the interests of Russia.

During the visit of the Grand Duke Constantine to England about that time, he resided for some days with the Earl of Ellesmere at Worsley Hall, about a mile and a half from Bridgewater Foundry. We were favoured with several visits from the Grand Duke, accompanied by Baron Brunnow, Admiral Heyden, and several other Russian officials. They came by Lord Ellesmere's beautiful barge, which drew up alongside our wharf, where the party landed and entered the works. The Grand Duke carefully inspected the whole place, and expressed himself as greatly pleased with the complete mastery which man had obtained over obdurate materials, through the unfailing agency of mechanical substitutes for manual dexterity and muscular force.

I was invited to meet this distinguished party at Worsley Hall on more than one occasion, and was much pleased with the frank and intelligent conversation of the Grand Duke, in his reference to what he had seen in his visits to our works. It was always a source of high pleasure to me to receive visits from Lord Ellesmere, as he was generally accompanied by men of distinction who were well able to appreciate the importance of what had been displayed before their eyes. The visits, for instance, of Rajah Brooke, the Earl of Elgin, the Duke of Argyll, Chevalier Bunsen, and Count Flahault, stand out bright in my memory.

But to return to my rope-making machinery. It was finished to the satisfaction of the Russian officers. It was sent off by ship to the Black Sea, in July 18 51, and fitted up at Nicolaiev shortly after. I received a kind and pressing invitation from Admiral Kornileff to accompany him on the first trip of a magnificent steamer which had been constructed in England under his supervision. His object was, not only that I might have a pleasant voyage in his company, but that I might see my machinery in full action at Nicolaiev, and also that I might make a personal survey of the arsenal workshops at Sebastopol. It would, no doubt, have been a delightful trip, but it was not to be. The unfortunate disruption occurred between our Government and that of Russia, which culminated in the disastrous Crimean War. One of the first victims was Admiral Kornileff. He was killed by one of our first shots while engaged in placing some guns for the defence of the entrance to the harbour of Sebastopol.

See Also


Foot Notes

  1. In the case of rambling premises, such as iron shipbuilding yards, the conveyance of steam by well protected pipes put underground for the purpose of driving engines to work punching and plate-shearing machines (which have to be near at hand when the work is required), has very great practical advantages.
  2. The term " Laboratory " may appear an odd word to use in connection with machinery and mechanical operations. Yet its original signification was quite appropriate, inasmuch as it related to the preparation of explosive substances, such as shells, rockets, fusees, cartridges, and percussion caps, where chemistry was as much concerned as mechanism in producing the required results.