Grace's Guide

British Industrial History

Grace's Guide is the leading source of historical information on industry and manufacturing in Britain. This web publication contains 125,422 pages of information and 195,543 images on early companies, their products and the people who designed and built them.

John Smeaton

From Graces Guide

Jump to: navigation, search
Im20110602TN-Sme2.jpg
Im20110602TN-Sme3.jpg
Lathe built by Smeaton for his own use. See text.
1767. Atmospheric engine at New River Head.
1830 engraving of Eddystone Lighthouse
1879 drawing of Eddystone Lighthouse.
c.1770 telescope eyepiece micrometer made by John Smeaton, displayed at the London Science Museum

John Smeaton (1724-1792) was a civil engineer.

Biography

1724 June 8th. Born in Austhorpe, Leeds, the eldest child of William Smeaton (1684–1749), attorney, and his wife, Mary, née Stones, (d. 1759).

After studying at Leeds Grammar School, he joined his father's law firm, but then left to become a mathematical instrument maker (working with Henry Hindley), developing, among other instruments, a pyrometer to study material expansion and a whirling speculum or horizontal top (a maritime navigation aid).

1753 He was elected a Fellow of the Royal Society.

1756 June 7th. Married Ann Jenkinson (1725–1784) of York at St George's, Hanover Square, London. Two daughters, Ann (b. 1759) and Mary (b. 1761), survived into adulthood.

1756-1759 Built Eddystone Lighthouse

1759 He won the Copley Medal for his research into the mechanics of waterwheels and windmills. His paper addressed the relationship between pressure and velocity for objects moving in air, and his concepts were subsequently developed to devise the 'Smeaton Co-efficient'.

1759-1782 He performed a series of further experiments and measurements on waterwheels that led him to support and champion the vis viva theory of German Gottfried Leibniz, an early formulation of conservation of energy. This led him into conflict with members of the academic establishment who rejected Leibniz's theory, believing it inconsistent with Sir Isaac Newton's conservation of momentum. The debate was sadly marred by unfortunate nationalistic sentiments on the establishment's part.

Recommended by the Royal Society, Smeaton designed the third Eddystone Lighthouse (1755-59). He pioneered the use of 'hydraulic lime' (a form of mortar which will set under water) and developed a technique involving dovetailed blocks of granite in the building of the lighthouse. His lighthouse remained in use until 1877 when - with the rock underlying the structure's foundations beginning to erode - it was dismantled and partially rebuilt at Plymouth Hoe. He is important in the history of the development of cement, because he identified the compositional requirements needed to obtain "hydraulicity" in lime; work which led ultimately to the invention of Portland cement.

1761 Employing his skills as a mechanical engineer, he devised a water engine for the Royal Botanic Gardens at Kew in 1761 and a watermill at Alston, Cumbria in 1767 (he is credited by some for inventing the cast iron axle shaft for waterwheels).

1769 Designed a cylinder boring mill for the Carron Co for machining large cylinder castings. Driven by a water wheel 18ft diameter and 5 ft wide, it was the most powerful boring mill at the time. The weight of the cutting head was supported by a counterbalanced wheeled carriage which travelled in the bore of the cylinder. The principle was inherently incapable of producing work to the standard that would later be demanded for the more sophisticated steam engines which replaced the Newcomen type. John Farey devoted several pages to the mill in his 1827 book.[1]

c.1770 Much improved the atmospheric engine, as it neared the end of its career, and built many large engines of this type about the year 1770.

1775 Erected an atmospheric engine at Chacewater Mine

Smeaton's next major work, however, ended in disaster. Hexham Bridge had been destroyed by a flood of the River Tyne in 1771. After investigating the gravel river bed Smeaton selected what he judged to be a better site and designed a noble nine-arch structure, work on which started in 1777. By 1779 work had been finished; the piers were surrounded by sheet piling with massive rubble masonry mounds as a protection against scour but, despite all this care, six of the eight piers were undermined by a violent flood in March 1782, two years after completion of the bridge

1782 Because of his expertise in engineering, Smeaton was called to testify in a court for a case related to the silting-up of the harbour at Wells-next-the-Sea in Norfolk. He is considered to be the first expert witness to appear in an English court.

In 1782 he built the Chimney Mill at Spital Tongues in Newcastle upon Tyne, the first 5-sailed smock mill in Britain.

Highly regarded by other engineers, he contributed to the Lunar Society and founded the Society of Civil Engineers in 1771. He coined the term civil engineers to distinguish them from military engineers graduating from the Royal Military Academy at Woolwich. After his death, the Society was renamed the Smeatonian Society, and was a forerunner of the Institution of Civil Engineers, established in 1818.

His pupils included canal engineer William Jessop and architect and engineer Benjamin Latrobe.

1792 October 28th. While walking in the garden of his family home at Austhorpe, he suffered a stroke and died six weeks later. He and was buried in the parish church at Whitkirk, West Yorkshire.

After Smeaton's death, his lathe came into the possession of Nathan Waddington, after whose death it passed to his son James Waddington. He lent the lathe to his brother–in–law Ezra Mathers of Hunslet. Subsequently, the lathe came into the possession of Mr J.W. Morrill (owner of Austhorpe Lodge, who loaned it to the Yorkshire College for Education in the early 1900s. For a time it was displayed at Temple Newsam Museum, and is currently (2017) in storage at Armley Mills Museum, pending future display.

Fortunately, many of John Smeaton's comprehensive reports and notes were preserved and published, some of which are available online[2] [3]

1820 Death of his daughter Mary Dixon.[4]

List of Civil Works

Having decided that he wanted to focus on the lucrative field of civil engineering, he carried out an extensive series of commissions, including:


See Also

Loading...

Sources of Information

  1. 'A Treatise on the Steam Engine, Vol 1' by John Farey, 1827
  2. [1] The Miscellaneous Papers of John Smeaton, Civil Engineer, &c. F.R.S, by John Smeaton, 1814
  3. [2] 'Reports of the Late John Smeaton, F.R.S., Made on Various Occasions in the course of his Employment as a Civil Engineer', Volume 1 (of 2), By John Smeaton, 1837
  4. Leeds Mercury - Saturday 13 May 1820