Grace's Guide To British Industrial History

Registered UK Charity (No. 115342)

Grace's Guide is the leading source of historical information on industry and manufacturing in Britain. This web publication contains 162,257 pages of information and 244,498 images on early companies, their products and the people who designed and built them.

Grace's Guide is the leading source of historical information on industry and manufacturing in Britain. This web publication contains 147,919 pages of information and 233,587 images on early companies, their products and the people who designed and built them.

Charles Algernon Parsons

From Graces Guide
Revision as of 23:48, 7 March 2017 by JohnD (talk | contribs)
1918.
Im19390506PP-Parsons.jpg
1931. Sir Charles Parsons, O.M.
Turbinia, designed by Charles Algernon Parsons and made by the Marine Steam Turbine Co, on display at the Discovery Museum, Newcastle
Propellers on 'Turbinia' at the Discovery Museum, Newcastle
Parsons' Dynamometer at the Discovery Museum, Newcastle. The two halves of the spring-loaded claw-type coupling move relative to each other, depending on the torque....
.... the movement is magnified by a bell crank, changing the distance between the points. Presumably the distance was measured by pressing a board against the rotating points
Parsons' original cavitation tunnel at the Discovery Museum, Newcastle
1938.

Charles Algernon Parsons (June 13, 1854 – February 11, 1931) was a British engineer, best known for his invention of the multi-stage (compounded) steam turbine. He was one of the most original British engineers since the days of James Watt and was the holder of more than 300 patents.

1854 Born at 13 Connaught Place, Hyde Park, London, he was the youngest son of the famous astronomer Lord Rosse and photographic pioneer Mary Parsons (nee Field).

Educated at Trinity College, Dublin and St. John's College, Cambridge.

1877 Graduated from Cambridge in 1877 with a distinguished degree in mathematics, he then went to the Elswick works of W. G. Armstrong and Co.

1881 Leaving there in 1881 he worked with James Kitson at Leeds for 2 years. During his period at Kitsons he patented a four-cylinder high-speed epicycloidal steam engine.

1883 he became a junior partner at Clarke, Chapman and Co, Gateshead, in charge of the new electrical department, where he stayed until 1889.

1883 Married Katherine Bethell, daughter of William Bethell.

1885 His daughter Rachel Mary Parsons was born.

1887 Algernon George Parsons was born.

Parsons concentrated on efforts to devise a high-speed engine for driving directly the newly introduced electric generators, as well as developing a high speed generator. His steam turbine patent of 1884 was comparable in importance to that of James Watt in 1769. The first Parsons turbo-generator was completed in 1884 and is now preserved in the London Science Museum; by 1888 about 200 were in service, mainly for lighting on ships. Clarke, Chapman and Parsons were partners in setting up Sunbeam Lamp Co Ltd to manufacture carbon filament light bulbs.

1889, Parsons left Clarke Chapman, taking twelve employees with him, to found C. A. Parsons and Co at Heaton.

1890 The Forth Banks Power Station, the first to use a turbo-generator, started operation. An example of a 1891 radial flow steam turbine is in the London Science Museum. In 1895 Parsons sold the patent rights for U.S.A. and Canada[1].

December 1893 he bought back the turbine patent from his partners (although the rights for Belgium, Germany, Italy and Sweden had been allowed to lapse).

1894 he applied for a patent for 'propelling a vessel by means of a steam turbine, which turbine actuates the propeller or paddle shaft directly or through gearing'. The same year he set up a separate organisation at Wallsend to focus on marine propulsion, the Marine Steam Turbine Co Ltd which built the famous turbine-powered yacht, Turbinia. This was sailed at speed through the Diamond Jubilee fleet review of the Royal Navy in June 1897 off Portsmouth, demonstrating the great potential of the new technology. Today, Turbinia is housed in a purpose-built gallery at the Discovery Museum, Newcastle.

Although Turbinia proved to be a spectacular success, its initial performance fell short of expectations. Parsons needed to establish whether the problem lay with turbine performance or with the propellers. He devised an ingenious, but simple dynamometer (see photo), which proved that the problem lay with the propeller. He deduced that cavitation was occurring due to the very high speed of the propeller. Parsons credited Sir John Thornycroft and Sydney Barnaby with first observing the phenomenon [2]. He set about investigating the problem using a small scale chamber in which model propellers could be tested (see photo). Because of the small size of the models, the tests had to be done at sub-atmospheric pressure to provoke cavitation at reasonable shaft speeds. The cure was to use very wide blades, and, on Turbinia, to have three shafts each with three propellers. Each shaft was driven by its own turbine. Each turbine was part of the a cross-compound set comprising High, Intermediate and Low Pressure turbines.

When the success of Turbinia had been established, Parsons set up a new company in Newcastle Upon Tyne, the Parsons Marine Steam Turbine Co, which bought the rights from Marine Steam Turbine Co Ltd[3]. In 1898 Charles Parsons went to court seeking to extend the life of the turbine patent; a 5-year extension was granted.

1897 His cousin, Geoffrey, joined the Marine Steam Turbine Co; he became a director of Parsons Marine Steam Turbine Co in 1911.

1900 Brown, Boveri and Co and The Parsons Foreign Patents Co entered into a contract for the sale and manufacture of the well-known Parsons' steam turbine in the following countries: France, Germany, Russia, Switzerland and Italy.[4]

As well as working on dynamo and turbine design, and power generation, which exerted great influence on the fields of naval and electrical engineering, Charles Parsons also initiated developments such as geared turbines for use with low-speed vessels (1909) and high-pressure steam engines (after WW1).

Parsons was also interested in acoustics and in optics. He organized a special department for the production of searchlight reflectors at Heaton.

1921 he acquired a controlling interest in the optical firm of Ross Ltd, of Clapham, where he improved the methods of glass-grinding. He also purchased the Derby Crown Glass Co to improve the basic glass. The Parsons Optical Glass Company produced many different types of glass for optical purposes.

1925 he purchased the firm of Sir Howard Grubb and Sons, makers of large astronomical telescopes. The re-named company, Grubb Parsons, had works at Walkergate, adjacent to the turbine works, where many large telescopes were produced[5]. In 1937 Savage and Parsons was set up to produce searchlights and acoustic detectors.

He established traditions of "reliability, efficiency and service" in electricity generation, which were maintained by C. A. Parsons and Co[6].

1902 Rumford Medal.

1911 Knighted

1927 Member of the Order of Merit in 1927

1931 February 11th. Died

1933 October 16th. Death of His wife The Hon. Lady Parsons, one of the founders of the Women's Engineering Society

His company survives in the Heaton area of Newcastle and is now part of Siemens, a German conglomerate. Sometimes referred to as Siemens Parsons, the company recently completed a major redevelopment programme, reducing the size of its site by around three quarters and installing the latest manufacturing technology.

The Parsons Building in Trinity College, Dublin, which houses the Department of Mechanical and Manufacturing Engineering, is named in his honour. On 28 September 2006, the Minister for Communications, Marine and Natural Resources, Mr Noel Dempsey TD, announced the Charles Parsons Awards which provide funding for research groups engaged in energy research in Ireland.


1931 Obituary [7]

The Hon. Sir CHARLES ALGERNON PARSONS, O.M., K.C.B., LL.D., D.Sc., became a Graduate of the Institution in 1880, and was first elected a Member in 1882. In 1925 he was elected an Honorary Life Member in view of his eminent scientific attainments, and the Institution thus recognized the greatness of one of its Members, of whom the President said, in referring at the Annual General Meeting on 20th February to his death, his name "would hold in the pages of history a place of equal fame and honour with those of Savery, Newcomen, Watt, Trevithick, and Stephenson."

In including in the "Proceedings" a brief memoir of every deceased member of the Institution of whose professional career particulars are obtainable, it is rare that the space available is adequate to do justice to the work of those who are gone from us, and in such a case as this the mere recital of the firms and work with which the deceased Member was connected, which is all that is usually possible, would be not merely inadequate, but almost irrelevant. Neither would such a recital in this case be an inspiration to young members who are still at the humble beginnings of their careers, in the sense in which it is perhaps usually its best justification, for Sir Charles enjoyed advantages in his early years which are given to few. The youngest son of the third Earl of Rosse, his father, with all the resources of his aristocracy of mind as well as of worldly position, trained him, almost from his birth in 1854, to be an engineer and scientist. A private workshop was his constant resort in boyhood, and he had as tutors such distinguished men as Sir Robert Ball and Dr. Johnstone Stoney.

Yet this does not in the least dim the lustre of Sir Charles's subsequent achievements, for rarely can such good fortune have come to one so fitted to turn it to greatest advantage. He went to Cambridge University, where he was placed eleventh wrangler, and was then apprenticed at Armstrong's Elswick works. At this time Sir Charles was experimenting with rotary steam-engines in which the cylinders rotated round a revolving crank-shaft at half the speed of the latter. Several such engines were built while he was at Armstrong's, and later at Kitson's of Leeds, where for a time he held an appointment.

He first began to make practical experiments with the steam-turbine at Messrs. Clarke, Chapman, Parsons and Company's, of Gateshead, of which firm he had become junior partner, and in 1884 were filed two patents which represented the commencement of the development of the modern steam-turbine.

One of these was concerned with the dynamo which the turbine was to drive, for it was largely upon the achievement of constructing such a machine to run at a speed of 18,000 r.p.m. that the success of this initial turbine depended. Less than a year after, the first unit of 4 kw. was built, and this was the machine now in the Science Museum at South Kensington.

Many more machines, representing constant improvement, were built, until in 1889 the partnership was dissolved. The firm of C. A. Parsons and Company was then founded, and during the following five years was engaged in evolving an alternative type of turbine using the principle of radial flow.

In 1894, however, the original patent rights were restored to Sir Charles, and subsequent progress towards the present triumph of the steam-turbine was rapid. It was in the same year, 1894, that the Parsons Marine Steam Turbine Company was formed, with Sir Charles as managing director, and shortly afterwards the famous "Turbinia" appeared.

In recent years Sir Charles was still interested in pioneer work, notably in the high-pressure experimental Clyde steamer "King George V," and his genius extended to optical work and experiments in physical science.

He took over the Derby Crown Glass Works for the construction of searchlights and mirrors, and later founded, in conjunction with Sir Howard Grubb, a company to manufacture astronomical instruments and telescopes. His physical experiments were chiefly concerned with attempts to crystallize carbon under high pressure.

Sir Charles was elected a Fellow of the Royal Society in 1898, and he received the great honour of the Order of Merit in 1927. In 1928 he was the first engineer to win the Copley Medal. He was a Member of the Institution of Civil Engineers and an Honorary Member of the Institution of Electrical Engineers, while in 1917 he was President of the British Association. In 1926 he was awarded the Kelvin Medal.

Sir Charles Parsons died on 11th February 1931 while on a cruise at sea.


1931 Obituary [8]

THE HON. SIR CHARLES ALGERNON PARSONS, O.M., K.C.B., F.R.S., youngest son of the distinguished astronomer William Parsons, third Earl of Rosse, was born in London on the 13th June, 1854. He spent his boyhood at the family seat, Birr Castle, Parsonstown, Ireland, where the workshops in which his father constructed the great telescope afforded him practical education in mechanical things, while his theoretical studies were pursued under tutors, among whom was Sir Robert Ball. At the age of 18 he went to Trinity College, Dublin, and a year later he entered St. John’s College, Cambridge, and became a pupil of Dr. Routh. In 1877 he passed out as eleventh wrangler and went into the works of Sir W. G. Armstrong, Mitchell and Company at Elswick.

After serving 4 years’ apprenticeship at Elswick he was employed for 2 years on experimental work at the Airedale foundry of Messrs. Kitson and Company at Leeds, a firm which his elder brother Clere (the late R. C. Parsons, M. Inst. C.E.) had already joined. During that time he developed an epicycloidal engine and a method of propelling torpedoes by means of rockets. He tried his torpedoes in Roundhay lake, but although fair success was achieved, the rockets proved to be unsafe. In 1884 he joined as junior partner the firm of Clarke, Chapman and Company, of Gateshead-on-Tyne, who were interested in the development of electric lighting, and devoted his attention to the production of a steam turbine suitable for driving dynamos, his first patents being dated 23rd April, 1884.

During the ensuing 5 years the combined steam turbine and dynamo was developed, but mainly for the lighting of ships and on a small scale. Further progress called for costly experiments, justified in his own view by a belief in the future of the steam turbine which others did not fully share. He therefore decided to set up his own works at Heaton in Newcastle-on-Tyne. His struggles during the first 5 years of this venture were enhanced by questions of ownership of his original patents, which obliged him for a time to confine his developments to the radial-flow type of turbine, and in the first practical installation, at the Cambridge electric-supply station in 1891, the turbine was of that type ; but in 1894 he recovered possession of his early patents and could revert to his original parallel-flow type. The value of his invention and the smallness of the reward which he had received when his fundamental patent expired enabled him to secure an extension of 6 years for that patent.

The successful production of a high-speed rotary engine involved innumerable mechanical problems calling for the highest ingenuity and resource. "Throughout the whole evolution of the steam turbine he continued to be the active and incessant deus ex machina. Other inventors appeared and made their contributions, which led in some cases to more or less different designs. But they would be the first to acknowledge that it is to Parsons, far more than to any other man, that credit is due, not only for the first conception and the initial experiments, but for the subsequent improvements which have produced the gigantic turbines of to-day and have made them the chief means of generating central-station power and of propelling the biggest ships. All large modern turbines adopt his fundamental plan of multi-compound action by dividing the whole drop of pressure into many successive stages."

Meanwhile Parsons had turned his attention to the application of the steam turbine to ship-propulsion, and in 1894 he built the "Turbinia," 100 feet long and of 9 feet beam, fitted with a radial flow turbine and a single shaft, for which he substituted later three shafts, each driven by a turbine. This little vessel was shown at the Diamond Jubilee Naval Review in 1897, when her speed astonished the Fleet. With high speed of rotation of the propellers, cavitation became a serious problem, and Parsons undertook an experimental investigation of it, the results of which enabled him to design successfully directly-coupled turbines and propellers.

The Admiralty, after trying turbines in destroyers and in the "Amethyst," adopted them in 1905 for the "Dreadnought," and later ships, and other navies followed this lead. The first mercantile turbine-driven vessel was the Clyde steamer "King Edward"; other vessels, including Atlantic liners, followed; and in 1904 the bold step was taken of adopting turbines of 70,000 shaft HP. for the propulsion of the Cunard liners "Lusitania" and "Mauretania" with entirely successful results.

Parsons realized, however, that the direct coupling of engine and propeller limited the possibilities of the turbine, and he therefore set to work to devise a suitable form of mechanical gearing. In 1909 the Parsons Marine Steam Turbine Company, which had taken over the marine side of the business, bought the cargo-steamer "Vespasian" and replaced her triple-expansion engines by turbines fitted with gearing giving a speed reduction of 20 to 1 ; and with the successful outcome of this experiment direct coupling became a thing of the past. Here again the mechanical problems of producing satisfactory gear wheels gave scope for his ingenuity and resource, and were solved so successfully that in H.M.S. "Hood" 144,000 HP. is transmitted through a single-reduction gear; and the transmission of 175,000 HP. by such gearing is contemplated in the Cunard vessel now (1931) under construction.

While these marine developments were taking place, the steam turbine had become the chief prime mover in electric power-stations and the output of the turbo-alternator has gradually increased until machines of 80,000 kilowatts and more are in use. In a Parsons turbine installed in Chicago in 1923 a steam-pressure of 550 lbs. per square inch and a temperature of 760 F. was adopted, and Parsons demonstrated the applicability of high steam-pressures and high superheat to marine purposes in the Clyde river steamer "King George V," in 1926.

Other fields in which his inventive skill was applied were the manufacture of parabolic reflectors for searchlights and the production of optical glass of high quality. He devised means of producing at moderate cost reflectors of high efficiency and great accuracy of parabolic form ; and his interest in optical glass led him to acquire the Derby Crown Glass Works and to form the Parsons Optical Glass Company. In partnership with Sir Howard Grubb and Company he established at Heaton a workshop for building telescopes of any size.

One problem, however, to which he devoted much time and money, bested him, namely, the production of diamonds by the artificial crystallization of carbon. In spite of the highly ingenious methods by which he pursued the subject, he had achieved no result at the time of his death.

Many other scientific problems and interests filled his life, from the construction of amusing mechanical toys in his boyhood to the question of the feasibility and advantage of sinking a bore-hole 12 miles deep to examine the earth's crust, a subject which he discussed in his Presidential Address to Section G of the British Association in 1904. His inventiveness is indicated by the fact that he took out more than 300 British patents.

Innumerable honours were conferred upon him in recognition of his achievements. He was made C.B. in 1904 and K.C.B. in 1911, and received the Order of Merit in 1927. He was a Vice-President of the Royal Society, to which he was elected in 1898. That Society awarded him the Rumford and Copley Medals, and from other societies he received the Albert, Kelvin, Faraday, Franklin, and Bessemer Medals. The universities of Cambridge, Oxford, Edinburgh, Glasgow, Dublin, Durham, Leeds, Liverpool, Toronto and Pennsylvania conferred honorary degrees upon him, and he was President of the British Association (1919), the Institute of Physics, and the North-East Coast Institution of Engineers and Shipbuilders. He was a generous donor to the funds of the British Association, the Royal Institution, the Royal Society, and other bodies, and served as a member of the Advisory Council of the Department of Scientific and Industrial Research.

Sir Charles was elected into the Institution as an Associate Member in 1881, transferred to Membership in 1892, and elected as a Member of Council in 1903. He served on that body until 1907, and again from 1909 to 1913. He contributed a Paper to the Proceedings (jointly with Dr. G. G. Stoney)l and two introductory notes at the Engineering Conference of 1897. He was the author of numerous Papers presented to the Royal Society, the Institution of Naval Architects, the Institution of Electrical Engineers, and other bodies, and in 1918 delivered the Bakerian lecture of the Royal Society.

He married in 1884 Katharine, daughter of Mr. W. F. Bethell, of Rise Park, East Yorkshire, by whom he had one son (Major A. G. Parsons, R.F.A., killed in action in 1918) and one daughter, who, with Lady Parsons, survives him.

His character and personality are perhaps best described in the words of Lady Parsons and of his friend Sir Alfred Ewing.

Lady Parsons, writing of the early days of her married life at Leeds, says:-

Charles had the character of being an extraordinary and weird young man socially, but it was understood he was a great genius. . . He was immensely keen about the torpedo, and used to take the mechanic and me to Roundhay Lake at 7 a.m. . . . There they spent hours trying the torpedo, while I shivered on the bank.

Sir Alfred Ewing says :-

Parsons used in after life to say that he had missed much through not being sent to school. He did, undoubtedly, miss something. Shy, self-contained, inexpressive, he never wholly shook off certain characteristics which a public school might have masked or cured. To the last, even in the universal celebrity of his riper years, he kept an air of self-effacement, an exaggerated though wholly natural modesty which puzzled strangers as much as it endeared him to his friends.

He died at sea, after a brief illness, on the 11th February, 1931.


1931 Obituary [9]

The Hon. Sir CHARLES PARSONS, K.C.B., 0.M., LL.D.,D.Sc., F.R.S., a former Member of Council, and Original Member of the Institute, died on February 12, 1931, when on a voyage to the West Indies. At a memorial service held in Westminster Abbey on March 3, the Institute was represented by the President, Dr. Richard Seligman.

The name of Sir Charles Parsons has been for nearly half a century a household one throughout the world. Whether interested in science or not, all will regret the passing of a genius who spent a strenuous life in doing invaluable service to mankind.

Sir Charles Parsons, who was born on June 13, 1854, had the great good fortune of the guidance of a father eminent in the scientific world—the third Earl of Rosso, of telescope fame, whose home must have been an ideal nursery for a budding engineer. At the age of twelve the boy Charles, assisted by his brothers, built a steam carriage of 4 H.P. with a speed of 10 miles per hour. At Cambridge, where, at St. John's, he took a three years course, and came out as eleventh wrangler, he interested himself in his great hobby of machine construction, building many models of steam engines.

After leaving Cambridge, at the age of twenty-two, he was apprenticed at the great Elswick engineering works of Armstrong's, where his attention was largely centred on rotary steam engine design, the perfection of which he continued to work out when with Kitson & Company of Leeds, and, afterwards, as a partner with Clarke, Chapman, Parsons & Company, Ltd., of Gateshead. His efforts here resulted in improving what had been attempted by others in the use of steam turbines.

In 1884 Sir Charles patented his own invention, and the practical employment of the modern steam turbine was thus established. In 1890 he founded, under the title of C. A. Parsons & Company, Ltd., the renowned Heaton Works at Newcastle-upon-Tyne. From 1890 until his death he was indefatigable in adapting his turbines to a variety of world- wide uses. The extent of the universal debt owing to the activities of Sir 'Charles Parsons must ever remain beyond measure; those who are engaged in seafaring and the supply of electric power can best judge.

Although Sir Charles will be chiefly remembered as the inventor of the steam turbine, he had wide interests in other spheres, particularly in astronomical instruments, telescopes, glass, and carbon, in regard to which latter a lecture crammed with interest, on "The Formation of Diamond," was given by him as the May Lecture of the Institute in 1918 ; this lecture is incorporated in Volume XX of the Journal; it fills 20 pages and has many illustrations. The great scientific abilities of Sir Charles Parsons have been recognized by many societies. In 1898 he was elected a Fellow of the Royal Society, and President of the British Association in 1917, to honorary membership of the Institution of Electrical Engineers in 1909, and of the Institution of Mechanical Engineers in 1925. He was Vice-President of the Institution of Naval Architects, and President of the North-East Coast Institution of Engineers in 1913-1914. He had the honour of receiving the following medals : Bessemer, Kelvin, Faraday, Rumford, and Cropley. The Universities of Glasgow, Liverpool, and Durham conferred upon him the degree of Doctor of Science. Among other honours and dignities he received those of O.M. and K.C.B. Sir Charles Parsons stands out as a notable example to youth, for although his interests included outdoor sports during early manhood, these were not allowed to dominate. They fitted him for strenuous application to intellectual studies, and for manual work, of which he was never ashamed. All who had the pleasure of intimacy with this great worker acknowledged him to be a most delightful personality. —JOHN SCOTT


Early Turbine Generators

See Parsons Turbines: Early Examples


See Also

Loading...

Sources of Information

  1. The Times, 16 May 1898
  2. 'The Steam Turbine: The Rede Lecture, 1911', by Sir Charles A Parsons, K.C.B.
  3. The Times, 16 May 1898
  4. The Engineer 1900/04/27, p 444.
  5. Biography of Sir Charles Algernon Parsons, by Claude Gibb, revised by Anita McConnell, ODNB. http://www.oxforddnb.com/view/article/35396
  6. The Times, 1 August 1946
  7. 1931 Institution of Mechanical Engineers: Obituaries
  8. 1931 Institution of Civil Engineers: Obituaries
  9. 1931 Institute of Metals: Obituaries